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Outline.

1 The Pythagoras numbers of homogeneous polynomials.

2 The Pythagoras numbers of projective varieties.

3 Applications.



Definition.

A polynomial f ∈ R[X0, . . . ,Xn]2d is a sum-of-squares if there exist
an integer t > 0 and polynomials g1, . . . , gt ∈ R[X0, . . . ,Xn]d such
that

f = g2
1 + · · ·+ g2

t .

Obs. A given sum-of-squares f has many different representations.

Example:
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Definition.

The sum-of-squares length of f , denoted `(f ) is the smallest
integer r such that there exist forms g1, . . . , gr ∈ R[X0, . . . ,Xn]d
with

f = g2
1 + · · ·+ g2

r .

Denote by Σn,d the set of sums-of-squares of forms of degree d in
n + 1-variables.

Definition. (Choi-Lam-Reznick, Scheiderer)

The Pythagoras number Πn,d is the smallest number of squares
that suffices to express EVERY sum of squares in Σn,d .
Equivalently

Πn,d := max
f ∈Σn,d

`(f )



Motivation: Finding SOS certificates

Finding SOS certificates is a good method for verifying the
nonnegativity of f . If f is indeed SOS, how do we find such an
expression?

Observation. Let ~m be the vector of all monomials of degree at
most d. Then f is SOS iff there exists a positive semidefinite
matrix A � 0 such that

f = ~mtA ~m.

Remark.

f can be written as a sum of r-squares of linear combinations of
the components of ~m iff some A with rank r satisfies f = ~mtA ~m.



Observation. Let ~m be the vector of all monomials of degree at
most d. Then f is SOS iff there exists a positive semidefinite
matrix A � 0 such that

f = ~mtA ~m.

(+) The computational complexity of this problem is unknown
but such identites can often be found numerically in
polynomial time and often rounded to prove the existence of
exact certificates.

(-) Even numerical solutions to the above problem can only be
computed when the matrix is relatively small (max
10000× 10000 using state of the art augmented Lagrangian
solvers). The dimensions of A are

(n+d
d

)
×
(n+d

d

)
.



The Burer-Monteiro approach

An alternative approach:

1 Replace our PSD matrix A with a factorization A = Y tY
where Y has size r ×

(n+d
d

)
where r is such that the identity

f = ~mtA ~m has a solution of rank r and

2 Use non-convex (i.e. local) optimization algorithms to
minY ‖f − ~mtY tYm‖

(Advantage) The above problem has a much smaller search
space for Y . Although non-convex it often finds global
minima [Bumal, Voroninski, Bandeira, 2018].

(Key point) In order to guarantee correct behavior we would
like an a-priori bound for r , depending on information which
is easy to obtain from the problem at hand (for instance
number of variables and degree).



The numbers Πn,d give Burer-Monteiro bounds.

How to find a bound for r?

Note that any r ≥ `(f ) would work and r = Πn,d would work for
EVERY f ∈ Σn,d .

Theorem. (Scheiderer)

If the Iarrobino-Kanev conjectures about Hilbert functions of I (Z )2

for generic points Z hold then the number Πn,d ∼ d
n
2



Outline

In this talk we will generalize the Pythagoras numbers Πn,d to all
projective varieties.

The natural operations of projective geometry will allow us to
obtain computable lower and upper bounds for this quantity (via
Quadratic Persistence and Algebraic Treewidth).

We will study situations in which the upper and lower bounds
coincide. As applications we obtain a classification of extremal
varieties and the exact computation of Pythagoras numbers for
some varieties.



Real algebraic varieties

Let S := R[X0, . . . ,Xn] and let I ⊆ S be a homogeneous,
real-radical ideal which does not contain any linear form.

To the ideal I we associate:

1 A (totally) real projective variety

X := V (I ) ⊆ Pn

not contained in any hyperplane.

2 A graded R-algebra
R[X ] := S/I

the homogeneous coordinate ring of X .



The Pythagoras number of a variety X

Definition.

Let ΣX be the set of sums of squares of linear forms in R2,

ΣX :=
{
q ∈ R[X ]2 : ∃k ∈ N and si ∈ R[X ]1(q = s2

1 + · · ·+ s2
k )
}

Definition.

If f ∈ ΣX the sum-of-squares length of f is defined as

`(f ) = min

{
k ∈ N : ∃k , g1, . . . , gk ∈ R[X ]1

(
f =

k∑
i=1

g2
i

)}
.

Definition.

The Pythagoras number of X is defined as Π(X ) := maxf ∈ΣX
`(f ).



Sanity Check

Example:

What is the Pythagoras number of Pn?

Example:

Let X = V (X 2 + Y 2 − Z 2) ⊆ P2. What is the Pythagoras number
of X?



Sanity Check

Example:

What is the Pythagoras number of Pn?
If q = x tAx then by changing coordinates we can write

q =
n∑

i=0

λiX
2
i =

n∑
i=0

(√
λiXi

)2

so Π(X ) = n + 1.

Example:

If X ⊆ P2 is defined by the ideal (X 2 + Y 2 − Z 2) ⊆ R[X ,Y ,Z ]
then

g := X 2 + Y 2 + Z 2 = 2Z 2.

so `(g) = 1. In fact Π(X ) = 2.



Veronese embeddings

Let νd : Pn → P(n+d
d )−1 be the map sending [x0 : · · · : xn] to the

vector of all monomials of degree d in variables x0, . . . , xn.
X := νd(Pn)

Example:

ν2 : P2 → P5

ν2([x : y : z ]) = [x2 : y2 : z2 : xy : xz : yz ]

X := ν2(P2) is the Veronese surface in P5

The linear forms in X := νd(Pn) correspond to forms of degree d
in Pn and the quadratic forms in X correspond to forms of degree
2d in Pn.

Example:

If X := νd(Pn) then Π(X ) := Πn,d .



Lower bounds from quadratic persistence.

Definition.

Let q ∈ Pn be a point in projective space and let V be a
hyperplane not containing q. we define the projection away from
q, πq : Pn \ {q} → V ∼= Pn−1 by sending a point x to the unique
point of intersection between the line 〈q, x〉 and V .



Properties of projections.

If q ∈ X ⊆ Pn is a generic real point then

1 Y := πq(X ) ⊆ Pn−1 is a non-degenerate variety and

2 (Key property) The cone ΣY is isomorphic to the face F of
ΣX consisting of sums of squares vanishing at q.



Properties of projections.

Lemma.

If Y = πq(X ) then Π(X ) ≥ Π(Y )

Proof.

Π(X ) = max
f ∈ΣX

`(f ) ≥ max
f ∈ΣY

`(f ) = Π(Y )



Lower bounds from projections away from real points.

Lemma.

If Y = πq(X ) then Π(X ) ≥ Π(Y )

So we would like to keep projecting away from points until we can
actually compute the right hand side. This would be very easy if Y
was projective space itself...

Definition.

The quadratic persistence qp(X ) of a variety X is the cardinality
s of the smallest set of points q1, . . . , qs for which the ideal of the
projection π{q1,...,qs}(X ) ⊆ Pn−s contains no quadrics.



A lower bound Theorem

Theorem. (Blekherman, Smith, Sinn, -)

If X ⊆ Pn is irreducible and nondegenerate then the following
inequalities hold:

qp(X ) ≤ codim(X )

Π(X ) ≥ n + 1− qp(X )

It follows that Π(X ) ≥ dim(X ) + 1.

Question.

1 What are the varieties with small Pythagoras number?

2 What are the varieties with large quadratic persistence?



Classification of varieties with small Pythagoras number

Theorem. (Blekherman, Plaumann, Sinn, Vinzant)

Assume X is irreducible. The variety X is of minimal degree if and
only if Π(X ) = dim(X ) + 1.

Theorem. (Blekherman, Sinn, Smith, -)

Assume X is irreducible. The variety X is of minimal degree if and
only if qp(X) = codim(X).

Remark.

For these varieties the lower bound is an equality
Π(X ) = n + 1− qp(X)



Varieties of minimal degree

The degree of any non-degenerate projective variety X ⊆ Pn

satisfies the inequality

deg(X ) ≥ codim(X ) + 1.

Definition.

X ⊆ Pn is of minimal degree if the equality holds

The classification of varieties of minimal degree in projective
spaces is known since the 1880s [Castelnuovo, Del Pezzo]. They
are cones over

1 A quadric hypersurface or

2 The Veronese surface ν2(P2) ⊆ P5 or

3 A rational normal scroll, the projective toric variety
corresponding to a Lawrence prism with heights (a0, . . . , an).



Classification of varieties with small Pythagoras number

Theorem. (Blekherman, Smith, Sinn, -)

Let X be irreducible and Arithmetically Cohen-Macaulay. The
following statements are equivalent:

1 Π(X ) = dim(X ) + 2

2 qp(X) = codim(X)− 1.

In particular Π(X ) = n + 1− qp(X)

Theorem. (Blekherman, Smith, Sinn, -)

Such varieties can be classified as either:

1 X is a variety of almost minimal degree (i.e.
deg(X ) = codim(X) + 2) or

2 X is a subvariety of codimension one in a variety of minimal
degree.



Back to quadratic persistence...

We know that quadratic persistence is an algebraic invariant
which:

1 Takes values in [0, 1, . . . , codim(X)]

2 It assumes its maximum value only on varieties of minimal
degree.



Definition.

The length of the linear strand of C[X ] is given by

b(X ) := min{i ∈ N : Torj(C[X ],C)j+1 = 0 for all j ≥ i}

Theorem. (Green’s Kp,1-Theorem)

The length of the linear strand of the free resolution of X is at
most 1 + codim(X) and equality holds iff X is a variety of minimal
degree.

Using the BGG correspondence we prove,

Theorem. (Blekherman, Sinn, Smith, -)

The inequality b(X ) ≤ 1 + qp(X )



Upper bounds: Chordal graphs and combinatorial treewidth

Let G be an undirected, loopless graph.

Definition.

A graph G is chordal if it does not contain induced cycles of length
` ≥ 4.



Chordal graphs and combinatorial treewidth

Definition.

A graph C is a chordal cover of a graph G if V (G ) = V (C ),
E (G ) ⊆ E (C ) and C is chordal.



Chordal graphs and combinatorial treewidth

Definition.

The treewidth of a graph G is the smallest clique number of its
chordal covers (minus one).

Informally, tree-width measures how tree-like is a graph. It is an
important concept because NP-complete problems are “easy” on
graphs with small treewidth. Computing TreeWidth is NP hard.



An upper bound from combinatorial treewidth

To a graph G in [n] we can associate an ideal
IG = (xixj : (i , j) 6∈ E (G )) ⊆ k[x1, . . . , xn] and a variety
XG := V (IG ) ⊆ P|V |−1.

Theorem. (Laurent, Varvitsiotsis)

The inequality Π(XG ) ≤ 1 + tw(G ) holds.



Commutative algebra and chordal graphs

To a graph G in [n] we can associate an ideal
IG = (xixj : (i , j) 6∈ E (G )) ⊆ k[x1, . . . , xn].

Theorem. (Fröberg)

The graph G is chordal if and only if the ideal IG has
Castelnuovo-Mumford regularity 2.

Varieties of regularity two are the “chordal graphs” of algebraic
geometry.



Chordal varieties

Theorem. (Fröberg)

The graph G is chordal if and only if the ideal IG has
Castelnuovo-Mumford regularity 2.

What are all “chordal-like” varieties? (i.e. those of regularity two)

Theorem. (Eisenbud, Green, Hulek, Popescu)

The varieties of regularity two are precisely the ”linear joins” of
varieties of minimal degree.

Varieties of regularity two interpolate between “Chordal graphs”
and ”varieties of minimal degree”.



Theorem. (Blekherman, Plaumann, Sinn, Vinzant)

For varieties of regularity two Π(X ) := dim(X ) + 1



Upper bounds for Pythagoras numbers from inclusions

Suppose X ,Y ⊆ Pn are real varieties.

Lemma.

If X ⊆ Y then Π(X ) ≤ Π(Y ).

This would be very useful if we could compute, or even just bound,
the right hand side...



Algebraic treewidth and an Upper Bound Theorem

Definition.

The algebraic treewidth of a variety X ⊆ Pn, denoted tw(X ) is the
smallest dimension of a variety Y of regularity 2 with X ⊆ Y .

Theorem. (Blekherman,Sinn,Smith,-)

The inequality Π(X ) ≤ tw(X ) + 1 holds.



Theorem. (Blekherman,Sinn,Smith,-)

Suppose Y is a variety of minimal degree and X ⊆ Y . If
qp(X) = qp(Y) then:

1 tw(X ) = dim(Y )

2 b(X ) = b(Y )

3 Π(X ) = 1 + tw(X ) = n + 1− qp(X )

Example:

Let P be a lattice polytope and let Ck := P × [0, k]. For all
sufficiently large k the equality Π(X (Q)) = 1 + #P holds.



An open problem.

Theorem. (Scheiderer)

For all d ≥ 2 the following inequalities

d + 1 ≤ Π
(
νd(P2)

)
≤ d + 2

Moreover:

d Π

2 3
3 4
4 ??
5 ??
6 ??
...

...


